Slashdot is powered by your submissions, so send in your scoop

 



Forgot your password?
typodupeerror
Note: You can take 10% off all Slashdot Deals with coupon code "slashdot10off." ×
Music Social Networks Apple

Going Head To Head With Genius On Playlists 174

brownerthanu writes "Engineers at the University of California, San Diego are developing a system to include an ignored sector of music, dubbed the 'long tail,' in music recommendations. It's well known that radio suffers from a popularity bias, where the most popular songs receive an inordinate amount of exposure. In Apple's music recommender system, iTunes' Genius, this bias is magnified. An underground artist will never be recommended in a playlist due to insufficient data. It's an artifact of the popular collaborative filtering recommender algorithm, which Genius is based on. In order to establish a more holistic model of the music world, Luke Barrington and researchers at the Computer Audition Laboratory have created a machine learning system which classifies songs in an automated, Pandora-like, fashion. Instead of using humans to explicitly categorize individual songs, they capture the wisdom of the crowds via a Facebook game, Herd It, and use the data to train statistical models. The machine can then 'listen to,' describe and recommend any song, popular or not. As more people play the game, the machines get smarter. Their experiments show that automatic recommendations work at least as well as Genius for recommending undiscovered music."
This discussion has been archived. No new comments can be posted.

Going Head To Head With Genius On Playlists

Comments Filter:

Related Links Top of the: day, week, month.

Adding manpower to a late software project makes it later. -- F. Brooks, "The Mythical Man-Month"

Working...